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The galvanothermomagnetic effect in a cylindrical cooling element is analyzed, 
with the nonuniform temperature distribution taken into account. 

The galvanothermomagnetic (GTM) effect has been studied most thoroughly in single cry- 
stals of bismuth and in solid solutions of the bismuth--antimony system [1-9]. The prevail- 
ing theory of the GTM effect assumes a uniform temperature distribution over the cross sec- 
tion of the cooling element and is generally valid only for a gyrotropic medium. The mate- 
rial of a cooling element is strongly anisotropic [4, 6, 9, i0], however, so that assuming 
a uniform temperature distribution in the general case is not justified. 

Generalized Equation of Heat Conduction. The law of energy conservation in the steady 
state for an anisotropic homogeneous medium with kinetic coefficients independent of the tem- 
perature can be written as [8] 

O~T aT  OJ 

Oxh 

where x i is the i-th coordinate (i, k=l, 2, 3), A~ik=~ik(--H) -- ~ik(H), and ~ik(• is the 
thermal emf with the magnetic field in the forward direction (+H) and in the reverse direc- 
tion (--H), respectively. 

We consider the section of a long cylindrical cooling element made of a bismuth single 
crystal (Fig. I). Let, as usually, the electric current flow in the direction of the tri- 
gonal axis, the magnetic field be oriented in the direction of the bisector axis, and the 
kinetic coefficient be independent of the temperature. The law of energy conservation can 
then be rewritten as 

02T • 02T 2Q3tJH OT Aa3~J OT ~ p33J 2 _ 

�9 Ox 2 + O, (1) 

where Q31 is the Nernst coefficient and J is the density of the electric current in the z 
direction. In the general case Eq. (i) must also include a term proportional to the scalar 
derivative with respect to the temperature and representing the Righi--Leduc effect. In 
the case of bismuth this term can be disregarded. 

The temperature distribution is generally also a function of the z coordinate. When 
the element is sufficiently long (about 2-3 cm), however, then this variation can be dis- 
regarded within the middle portion. This has been confirmed experimentally by means of a 
thermocouple recording the same temperature at the top surface of such an element along 
the z axis within the middle portion over distances to 2-3 cm from the center [1-3, 5, 7, 
8]. We have verified this experimentally on specimens in the shape of circular cylinders [ii]. 

We now rewrite Eq. (i) in the form 

02T 02T ~ OT 
- -  + K - - - -  L + M ~ O; (2) 

O~ O~ Ox 

where A~32 =0 [12], K=x22/• L = 2Q31JH/x11, andM=p33J2/• Equation (2) is the general- 
ized equation of heat conduction, which describes the temperature distribution in our model. 
Inserting the expression 

Lx \ 
T (x, y) : V (x) + U (x, V) exp __~__) , (3) 
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Fig. i. Cylindrical cooling 
element made of a bismuth 
single crystal: x, binary 
axis; y, bissector axis; and 
z, trigonal axis; cross sec- 
tion is shaded. 

into Eq. (2) yields 

OzU ' OzU 1 + K L2U := 0 
Ox z a9 z 4 " 

provided that function V(x) satisfies the equation 

d2V L dV + M O. 
dx z dx 

The general solution to Eqs. (4) and (5) can be expressed as, respectively, 

2n+____J_l U = 2.~ [An exp (~y) + B,~ exp (--  ~3~y)] sin 
,~=o 2b 

1 | / ~  L z ( 2 n +  1) z ~ z  �9 
with ~n = ~ , '  - - ~ - ~ -  Kb 2 , 
b, and 

(4) 

(5) 

for a cooling element with the x dimension equal to 

(6) 

V ( x ) = - A +  ~ x + B e x p  . (7) 

Constants A, B and An, Bn must be determined from the boundary conditions. Cooling 
usually proceeds with the element surfaces y = 0, y = l, x=b adiabatically insulated from the 
ambient medium and heat exchange between the element base and the thermostat at temperature 
To occurs isothermally. Mathematically, this means 

T ( 0 ,  v) = To, 
q~ (b, g) = O, 

qu(x, O) = qv(x, l) = 0. 

(8) 
(9) 

(io) 

Interesting is also the case where the adiabatic insulation of the lateral boundaries 
y = 0 and y = I has been replaced by an isothermal contact with the thermostat. Unlike before, 
now heat exchange occurs between the lateral surfaces of the element and the thermostat at 
temperature To. This means the adiabatic boundary conditions (i0) have been replaced by 
isothermal ones 

T(x, 0) = T(x, l) = To. (ii) 

In expressions (9) and (i0) the quantities qx and qy are the components of the thermal 
flux density along the axes x and y, respectively. Explication of these components, with 
the aid of relation (3) and with the fact that ~32(--H) = ~32(H) #0 taken into account, trans- 
forms the boundary conditions to 

u ( o ,  v) = o,  (8') 

OU(b, g) --_0, (9')  
Ox 

OU(x, O)og a3~(H) J• [V(x) exp (  Lx ) + U ( x , O ) ] = 2  , 

OU(x, l) o~3~(H) J [V(x)exp ( Lx ) + U ( x ,  l ) ]=O.  
Oy ~22 2 . 

(io') 
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In expressions (8')-(10') let 

V (0)= To, dV (9_L = _ ~ L  V (b), 
dx 2 

making it possible to determine the constants A and B in expression (7)" 

LZTo'+ LMb - -  2M 
A=To--B,  B= L z [ 1 + exp (Lb)] 

With relation (3), the isothermal boundary conditions become 

U(x, O)=U(x, l)=[To--V(x)]exp (-- L___x_x ) . 2  

The so lu t ions  for condi t ions  (8) and (9) are s a t i s f i e d  au tomat ica l ly ,  inasmuch as 

sin 2 n +  1 - -  ~xl  = 0 .  - -  ax =sin  2 n + l  
2b x=o 2b [x=O 

We will first examine the effect of adiabatic boundary conditions (i0') 
will use the Fourier series expansion 

V(x) exp( Lx ) 2 C ~ s i n  2 n + l  - - - -  = =  - - '  ~ X .  

2 n=o 2b 

( l l ' )  

on the GTM effect~ We 

(12) 

Such an expansion is legitimate [13]. The coefficients of this series are 

b 

Cn -- b2 ~ V(x) exp {-- L__~x ) 2  sin in§ axdx. 
0 

Omitting here the simple intermediate calculations, we will write the final expressions for 

An, Bn, and C n 

where 

As= 1-- exp (-- ~J) as2 (H) C~, (13) 
2 sh (~=l) ~ •  %2 (/4) J 

B~,-- --, 1-- exp(~,~l) aa~(/4) C= , (14) 
2 sh (~nl) ~nz22 - -  ~32 (/4) J 

C,~ -- 2A I~ + 2M 2B i3 (15) 
b ~ I 2 +  b .... ' 

2~+1 c ( L b )  
+(- -1 )  ~+1 - -  exp 

2b 2 2 

4 2b 

( I (_  1)~ Lb exp Lb --LfJ~ (-- 1) ~ 
T 4 2b 

I2= __L~4 @ ( i n + l )  2 2 b  ~ + [ @ ( i n @ l ) ~ ]  2 ; +  2b 

~ + ( - - 1 )  n+l - -  exp 
2b 2 

LZ ( i n + l )  2 
4 2b 

As can be seen, adiabatic insulation of the lateral surfaces results in a two-dimensional 
temperature distribution. This two dimensionality vanishes when ~32(H) =0, i.e., when the 
material of the cooling element is isotropic [14, 15]. 

In the case of isothermal boundary conditions, the heat transfer between element and 
thermostat occurs not only through the bottom base but also through the lateral surfaces so 
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that the temperature distribution over the cross section becomes again two-dimensional. 
Constants A~ and B~ (the prime sign distinguishes them from constants (13) and (14) in the 
case of adiabatic boundary conditions) can be determined from conditions (ii'): 

A~ ---- 1 - -  exp (-- ~,~l) C~, (16) 
2 sh ([3,j) 

B~ = -- I --exp (~l) Cj. (17) 
2 sh (~,~0 

For finding A~ and B~ we have used the series expansion 

V (x)l exp { _  __.Lx = Cj sin ~ 2 n  -~- 1 nx, [To 2 2b n ~ D  

where 
2To 

c'~=c.+ --7- h, 

with C n and 11 already determined earlier. 

We now introduce the notation 

U~ (y) = A~ exp ( ~  q- B~ exp (-- ~y).  

Then the expression for the temperature distribution becomes 

T(x ,y)  V ( x ) + e x p  ( - @ )  2 U~(y) sin 2 n + l  
n=o 2b (18) 

We will analyze expression (18). In the case of adiabatic insulation of the lateral surfaces, 
we have for the middle portion of the element, i.e., for y=I/2 (at any x) 

U~ (//2) = 2a2 C~ sh (~fl/2) 
s s h ( ~ 0  ~--a~ ' (19) 

where a = a 3 2 ( H ) J / n 2 a .  For b ismuth  • 2 1 5  W/cm.K, J ~ 1 0 2  A/cm 2, and a a 2 ( H ) ~ 1 0  -4 V/K 
so t h a t  a ~ 0 . 1  cm -1 .  Also L= 2 Q 3 1 H J / u l ~ 0 . 2  cm -x and K ~ I .  With t h e s e  v a l u e s  one can 
write for 8n 

2 n + l  
2b 

The c o e f f i c i e n t s  Un( l /2 )  co r r e spond ing  to  t h e s e  pa ramete r s  w i l l  be 

( 
J (2n -t- 1) ~ ~2 4b  ' 

assuming t h a t  g n l ~ ( 2 n + l ) v l / 4 b  ~ 1 or  

b/l((2n + 1) ~/4. (21) 

Condition (21) is known to be certainly satisfied for large n. For n = 0 it is satisfied 
quite closely when b is several millimeters large and I = 1.5-2 cm. The coefficient Cn in 
expression (20) is proportional to i/(2n+ i) and, therefore, decreases with increasing n. 
We thus conclude that coefficients Un(y) in expression (18) are, under the condition (21), 
small for the middle portion of the element. The series in expression (18) converges fast 
so that only two or three terms need to be retained for calculations. Owing to the smallness 
of its coefficients, this series does not, under condition (21), contributeappreciably to 
the temperature distribution. One can, therefore, regard the temperature distribution (18) 
as being described by function V(x) alone and thus to be one-dimensional. In summing up, 
it can be said that within the middle portion of the element, i.e., at points near the 
straight line y = I/2 the temperature distribution is one-dimensional when condition (21) is 
satisfied. 

In the case of isothermal boundary conditions, with condition (21) also satisfied, we 
obtain for the middle portion of the element 

( ) U~ (l/2) ,~, 2C; exp 2n + 1 ~l , "  
4b 
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where C~%i/(2n+l) under the same condition (21). We thus arrive at the general conclusion 
that, when condition (21) is satisfied, the temperature distribution within the middle por- 
tion of a cooling element is one-dimensional independently of the boundary conditions con- 
straining its lateral surface. 

Accordingly, the temperature distribution over a section of the cooling element is not 
one-dimensional. One-dimensionality is attainable within the middle portion of a cooling 
element with the proper combination of dimensions 7 and b or, in the case of a cooling ele- 
ment made of a gyrotropic material, with adiabatic boundary conditions imposed at its lateral 
surfaces. 

Then 

Let us further assume that 

U (x, l/2) exp ( - - ~ -  ) ~ V  (x), 

T(x) To-~ - -  x - -  [ Mb 2M ] + 
L L L z I - -  exp (Lb) 

Under the conditions of an experiment we have Lb ~ 1 and, therefore, at a point x=b 

T (b) = To (2 + Lb)/2 + MbS/2. 

Replacing L and M with their values, we obtain for the temperature drop 

AT = To - -  T (b) : ToQ3~JHb/• - -  p33J2b~2• . 
It can be easily seen that the optimum current density 

(AT)ma~ = ZT~/2 

corresponds to the maximum temperature drop 

Jopt  = Q3iHTo/p83b, 

where Z= Q~IH2/~p33 is the thermomagnetic figure of merit. 

The expressions derived here do not differ formally from the already known ones [1-3, 
5, 7, 8]. The fundamental difference is that they apply in the general case to a certain 
section: when the length and the width are large but the height is small. Physically this 
means that surfaces of a cooling element spaced sufficiently far from its center will not 
distort the linearity of the temperature distribution within its middle portion. In this 
sense, the earlier obtained results remain valid. 

NOTATION 

J, electric current density; H, magnetic field intensity; T, temperature; • ~ik, 
Pik, components of thermal conductivity tensor, thermal emf tensor, and electrical resis- 
tivity tensor, respectively~ x, y, z, Cartesian coordinates; • and • thermal conductiv- 
ity along the binary axis and along the bisector axis, respectively; and b, ~, dimensions 
of a cooling element. 
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OPTIMIZATION OF CURRENT LEAD WITH STRONG THERMAL 

INTERACTION WITH SURROUNDING STRUCTURAL ELEMENTS 

V. K. Litvinov, S. P. Gorbachev, 
V. I. Kurochkin, and L. G. Bol'shinskii 

UDC 536.483 

The article theoretically investigates the problem of optimizing a current lead 
according to the minimum heat flux at the cold end upon strong thermal interac- 
tion with the surrounding structural elements. It presents a number of general- 
ized dependences characteristic of the optimum system. 

In creating superconducting cryomagnetic systems for attaining high economic indicators, 
it becomes necessary~to substantially reduce energy expenditure for compensating heat 
influxes into the cold zone. A number of authors [1-3] investigated in sufficient detail 
the problem of optimizing current leads without taking into account the effect of the struc- 
tural elements surrounding them. However, it was shown in [4] that the temperature profiles 
along the current lead and the surrounding courses are fairly close to each other, which 
indicates considerable mutual thermal influence. The present article investigates the prob- 
lems of optimizing current leads when there is considerable thermal interaction. As the 
initial assumption we use the assumption of ideal heat exchange, i.e., equal temperature 
profiles of the current lead, the cooling gas, and of the courses surrounding it which, 
according to [4], corresponds to a broad range of heat-transfer coefficients. 

Let us examine the steady-state univariate equation of heat balance in the dimension- 
less form 

d~O = c o ~  dO 1 (~/~)~ 
dx  2 dx  A " ~/~ -[----~' ( 1 )  

where 

A = 

1 

A T  13 

L ~z p - - o 5  
ST 

is the dimensionless complex characterizing the thermal influence of the structural ele- 
ments and is determined by the ratio of the amount of thermal energy transmitted through 
the structural elements by heat conduction to the amount of Joule heat released on the 
current lead whose thermal resistance is equal to the thermal resistance of the structural 
elements; 
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